On-farm cooperator trials 2011: effect of extended-duration row covers on muskmelon and winter squash on bacterial wilt and yield

Jean C. Batzer, assistant scientist
Heather Kearney, undergraduate student
Mark L. Gleason, professor/extension plant pathologist
Department of Plant Pathology

Introduction
Susceptible cucurbit crops are difficult to grow in Iowa because of bacterial wilt, caused by Erwinia tracheiphila. Striped and spotted cucumber beetles transmit bacterial wilt. Other insect pests such as squash vine borer and squash bugs may also have an economic impact on yield, particularly in squash.

Row covers are used to increase crop earliness and protect against insect pests. Row covers are usually deployed from transplant until anthesis (start of flowering), then removed to allow insect pollination. By opening the ends of the row covers at anthesis to enable pollination it may be possible to extend row cover duration by ~10 days beyond anthesis. Extending row cover protection may shield cucurbit crops from the first emergence of wilt-vectoring cucumber beetles, leading to a healthier crop and a greater yield. With cooperators Angela Tedesco (Turtle Farm), Gary Guthrie (Growing Harmony Farm), and Susan Jutz (ZJ Farm) we tested this strategy with butternut squash in 150-foot-long row covers and muskmelon in 30-foot long row covers in non-replicated trials.

Materials and Methods
At Turtle Farm (Grainger, IA), ‘Betternut 401’ winter squash was transplanted every two feet (2 seeds per hill) in 150-foot long segments. At Growing Harmony Farm (Nevada, IA) and ZJ Farm (Solon, IA), ‘Strike’ and ‘Athena’ muskmelon, respectively, were transplanted into 30 ft rows of black plastic mulch. At each farm, single-row treatments using polymer row covers (Agribon AG-30) on wire hoops, with edges buried in soil were compared as follows:

A) Rows covers removed at anthesis.
B) Row covers removed 10 days after anthesis. At anthesis, both ends of row covers were opened to allow pollination.
C) No row covers.

Striped and spotted cucumber beetle numbers were monitored weekly from transplant through the end of harvest, using yellow sticky cards. Beginning after row cover removal, the number of healthy, wilted, or dead plants in each row was assessed weekly. The number and weight of squash and muskmelon harvested from each row were also recorded.

Results and Discussion
Row covers removed at anthesis provided slightly earlier muskmelon harvests and higher yields than other treatments (Figure 1) for both Growing Harmony and ZJ Farms. A late frost resulted in loss of muskmelon seedlings that were not protected by row covers (Table 1). No conclusions can be drawn regarding management of disease because of the low
levels of bacterial wilt and cucumber beetle pressure. At Turtle Farm poor seed germination, a delayed planting date, and extremely high temperatures in August may have prevented meaningful comparisons of the poor squash harvest, totaling 1.5 to 43 pounds.

Acknowledgements
Thanks to Angela Tedesco, Gary Guthrie, and Susan Jutz, who made this research possible.

Table 1. Effect of row cover treatments on early transplant loss and bacterial wilt incidence at Growing Harmony (GH) and ZJ Farms (ZJ).

<table>
<thead>
<tr>
<th>Treatments</th>
<th>GH Frost death (percent)</th>
<th>ZJ Frost death (percent)</th>
<th>GH Total wilt (percent)</th>
<th>ZJ Total wilt (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No row cover</td>
<td>10</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Row cover removed at anthesis</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Row cover removed 10 days after anthesis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 1. Cumulative muskmelon yield at each harvest from 30 ft plots with three row cover treatments at two cooperator farms.